64 research outputs found

    Drivers of conservation and utilization of pineapple genetic resources in Benin

    Get PDF
    Valuation of farmer knowledge has been seen as a route to promote sustainable use of plant genetic resources. In pineapple production systems in Benin, inadequate knowledge of cultivation practices can lead to a number of inconveniences including abandon of some varieties and cultivars. To understand how farmers' knowledge and cultivation practices impact the sustainable utilization of pineapple genetic resources, we surveyed 177 pineapple farmers in southern Benin. We assessed farmers' knowledge and analyzed the relationship between their knowledge and factors such as age, education, and locality of provenance. Pineapple production system was dominated by men (96% respondents). According to farmers, Smooth cayenne is international market-oriented while Sugarloaf mainly targets domestic and regional markets. All farmers recognized that Smooth cayenne provided more income (USD 5,750/ha) than sugarloaf (USD 3,950/ha) in the production systems of southern Benin. The high value of median scores in comparison with the range of possible score showed that most farmers agreed and shared relatively similar knowledge. Correlation matrix and multiple linear regressions showed a significant relationship between farmers'practices and their knowledge of the plant; their knowledge of pineapple varieties is based on fruits traits. Also, farmers' knowledge was associated with locality of provenance. Constraints and options for genetic resources conservation and utilization in the pineapple production systems in Southern Benin were discussed based on current knowledg

    Compositional Solution Space Quantification for Probabilistic Software Analysis

    Get PDF
    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time

    Bridging boolean and quantitative synthesis using smoothed proof search

    Get PDF
    We present a new technique for parameter synthesis under boolean and quantitative objectives. The input to the technique is a "sketch" --- a program with missing numerical parameters --- and a probabilistic assumption about the program's inputs. The goal is to automatically synthesize values for the parameters such that the resulting program satisfies: (1) a {boolean specification}, which states that the program must meet certain assertions, and (2) a {quantitative specification}, which assigns a real valued rating to every program and which the synthesizer is expected to optimize. Our method --- called smoothed proof search --- reduces this task to a sequence of unconstrained smooth optimization problems that are then solved numerically. By iteratively solving these problems, we obtain parameter values that get closer and closer to meeting the boolean specification; at the limit, we obtain values that provably meet the specification. The approximations are computed using a new notion of smoothing for program abstractions, where an abstract transformer is approximated by a function that is continuous according to a metric over abstract states. We present a prototype implementation of our synthesis procedure, and experimental results on two benchmarks from the embedded control domain. The experiments demonstrate the benefits of smoothed proof search over an approach that does not meet the boolean and quantitative synthesis goals simultaneously.National Science Foundation (U.S.) (NSF Award #1162076

    Certification of Bounds of Non-linear Functions: the Templates Method

    Get PDF
    The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.Comment: 16 pages, 3 figures, 2 table

    Model counting for complex data structures

    No full text
    We extend recent approaches for calculating the probability of program behaviors, to allow model counting for complex data structures with numeric fields. We use symbolic execution with lazy initialization to compute the input structures leading to the occurrence of a target event, while keeping a symbolic representation of the constraints on the numeric data. Off-the-shelf model counting tools are used to count the solutions for numerical constraints and field bounds encoding data structure invariants are used to reduce the search space. The technique is implemented in the Symbolic PathFinder tool and evaluated on several complex data structures. Results show that the technique is much faster than an enumeration-based method that uses the Korat tool and also highlight the benefits of using the field bounds to speed up the analysis

    Final Needs Assessment Report: Identifying barriers faced by Ottawa Somali Youth in accessing post-secondary and vocational opportunities

    Get PDF
    In 2016, with funding from the Ontario Trillium Foundation’s Seed Grant program, The Somali Centre for Family Services of Ottawa (SCFS) invited Carleton University’s Centre for Studies on Poverty and Social Citizenship (CSPSC) to partner on the completion of a needs assessment focusing on the barriers faced by Somali youth in accessing post-secondary education, and employment training and opportunities. In carrying out this research, the SCFS’s main objective was to address social and economic exclusion locally by inviting Somali youth (age 19-30) from the Ottawa area to engage in the\ud conceptualization and design of resources that could best support their participation in educational and vocational programs

    Human Immunodeficiency Virus (HIV) types Western blot (WB) band profiles as potential surrogate markers of HIV disease progression and predictors of vertical transmission in a cohort of infected but antiretroviral therapy naïve pregnant women in Harare, Zimbabwe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expensive CD4 count and viral load tests have failed the intended objective of enabling access to HIV therapy in poor resource settings. It is imperative to develop simple, affordable and non-subjective disease monitoring tools to complement clinical staging efforts of inexperienced health personnel currently manning most healthcare centres because of brain drain. Besides accurately predicting HIV infection, sequential appearance of specific bands of WB test offers a window of opportunity to develop a less subjective tool for monitoring disease progression.</p> <p>Methods</p> <p>HIV type characterization was done in a cohort of infected pregnant women at 36 gestational weeks using WB test. Student-t test was used to determine maternal differences in mean full blood counts and viral load of mothers with and those without HIV <it>gag </it>antigen bands. Pearson Chi-square test was used to assess differences in lack of bands appearance with vertical transmission and lymphadenopathy.</p> <p>Results</p> <p>Among the 64 HIV infected pregnant women, 98.4% had pure HIV-1 infection and one woman (1.7%) had dual HIV-1/HIV-2 infections. Absence of HIV pol antigen bands was associated with acute infection, p = 0.002. All women with chronic HIV-1 infection had antibody reactivity to both the HIV-1 envelope and polymerase antigens. However, antibody reactivity to gag antigens varied among the women, being 100%, 90%, 70% and 63% for p24, p17, p39 and p55, respectively. Lack of antibody reactivity to gag p39 antigen was associated with disease progression as confirmed by the presence of lymphadenopathy, anemia, higher viral load, p = 0.010, 0.025 and 0.016, respectively. Although not statistically significant, women with p39 band missing were 1.4 times more likely to transmit HIV-1 to their infants.</p> <p>Conclusion</p> <p>Absence of antibody reactivity to pol and gag p39 antigens was associated with acute infection and disease progression, respectively. Apart from its use in HIV disease diagnosis, WB test could also be used in conjunction with simpler tests like full blood counts and patient clinical assessment as a relatively cheaper disease monitoring tool required prior to accessing antiretroviral therapy for poor resource settings. However, there is also need to factor in the role of host-parasite genetics and interactions in disease progression.</p
    • …
    corecore